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Abstract. In this paper we study the eigenvalue spectra of two model s-wave Hamiltonians 
in three dimensions: 

H = p 2 / 2  - l / r i 2 p r  i-2A2r2 

and 

H = p2/2  i 2pr  i- 2A2r2. 

Using the method of Hill determinants we show that these eigenvalue spectra display 
discontinuities in the limit when both coupling constants p and A vanish simultaneously. 
We use a simple variational calculation to argue that such discontinuities are characteristic 
of these Hamiltonians and are not an artefact of our numerical methods. In fact, such 
discontinuities are also to be seen in the case of a displaced harmonic oscillator in one 
dimension whose eigenvalue spectrum is exactly solvable. 

1. Introduction 

Killingbeck (1978) noticed the remarkable property of the s-wave Hamiltonian 

H = p 2 / 2  - l / r  + 2 A r  + 2 A 2 r 2  O < r < m  (1) 

that its exact ground-state wavefunction 

t,bo = exp( - -Y - Ar2) 

becomes unnormalisable for negative values of A, and  therefore the corresponding 
solution of the ground-state energy 

Eo= -$+3A ( 2 6 )  

is valid only for A 2 0. This implies that the ground-state energy of this Hamiltonian, 
as a function of A,  is non-analytic at A = 0, and  so for A < 0 Eo must be a different 
function of A than that given by equation (26). 

Later Calogero (1979) discussed a class of Hamiltonians of the form 

(3) 

where g is a coupling constant. He showed that these admit the exact ground-state 
wavefunction 

(4) 
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with the associated ground-state energy Eo = 0. The form of 4(x, g )  can be chosen 
such that t,bo(x, g) does not remain normalisable for all real values of the coupling 
constant g. Calogero considered specific examples of such Hamiltonians in which the 
exact ground-state wavefunction, although normalisable for all real non-zero values 
of g, became non-normalisable for g = 0 and showed that this loss of normalisability 
shows up  as a discontinuity (1img+,, E ( g )  # E ( 0 ) )  in the ground-state energy as a 
function of g. The non-analytic nature of the ground-state energy in such cases can 
also be understood by examining the behaviour of the corresponding potential 
V ( x ,  g )  = H -p2/2.  Calogero pointed out that in all such cases the corresponding 
potential features wells whose locations move to infinity and whose depths remain 
constant or even diverge as the coupling constant approaches the value at which the 
discontinuity occurs. 

Inspection shows that the Killingbeck Hamiltonian (1) is equivalent to the Calogero 
class of Hamiltonians in three dimensions with the corresponding 4 ( r )  given by 

4 ( r )  = l / r  -2Ar - 1 ( 5 )  

and the ground-state wavefunction given by 

= exp(-r - Ar2) ( 6 b )  

which ceases to be normalisable as soon as A becomes negative. 
Saxena and  Varma (1982) studied the Hamiltonian (1) and showed that the ground- 

state energy, although non-analytic, is in fact continuous across A =0,  and they 
constructed the two different perturbation series in powers of IA which are valid 
for positive and negative A. This, however, did not resolve the question of the general 
behaviour of the energy eigenvalues near A = 0. More recently, Saxena et a1 (1988) 
showed by detailed numerical calculations, supported by a simple variational argument, 
that the energy spectrum as a whole possesses a discontinuity at A =O. Clearly for 
large l A l ,  the 2h2r2  term in the potential corresponding to the Hamiltonian (1) is 
dominant and  the system behaves as a three-dimensional oscillator. As A approaches 
0+, their calculations showed that all the eigenvalues converge to the different s-wave 
hydrogen atom levels (since for A = 0, V( r )  = - 1/ r)  but all emerge together from - 
as A becomes negative. That is, all the energy levels except the ground state are 
discontinuous at A = O .  This happens essentially because for all A 3 0  the potential 
possesses a single Coulomb-like minimum at the origin; but as A becomes negative, 
even by an  infinitesimal amount, the potential suddenly develops an  infinitely wide 
additional minimum at ro=-1/2A (i.e. infinitely far away from the origin) of depth 
V,= -$+2A. All the energy levels (other than the ground state of the system) collapse 
into this well at infinity, in preference to the Coulomb-like well at the origin, as A + 0-. 

In this paper we examine in detail the behaviour of the eigenvalue spectrum of a 
generalisation of the Hamiltonian (1) in which the coupling constants for the linear 
and quadratic terms are made independent of each other. The major thrust of this 
paper is to show that a discontinuity in the eigenvalue spectrum is characteristic of 
such Hamiltonians provided both coupling constants vanish simultaneously, and that 
the nature of the discontinuity depends upon the relationship between the two coupling 
constants as they vanish. The details of this analysis are presented in § 2, while in 0 3 
this analysis is repeated for the case in which the Coulomb term is missing from the 
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Hamiltonian to show that even in such a case the eigenvalue spectrum possesses 
discontinuities. All the numerical results reported in this paper are based on the 
method of Hill determinants (Biswas et a1 1971, 1973). Finally in 0 4 we discuss the 
implications of these results and  provide an  exactly solvable example whose eigenvalue 
spectrum displays a discontinuity of the kind discussed above. 

2. Perturbed Coulomb interaction 

We examine the s-wave eigenvalue spectrum of the Hamiltonian 

H, = p 2 / 2 -  1 / r + 2 p r + 2 A 2 r 2  ( 7 )  
which is a n  obvious generalisation of ( 1 )  to the case where the couplings of the linear 
and quadratic terms are made independent of each other. This has been done in order 
to elucidate the conditions under which discontinuities can appear in the eigenvalue 
spectrum associated with such Hamiltonians. Notice that the potential corresponding 
to this Hamiltonian can be written as 

V,( r )  = - l / r  + 2pr  +2A2r2 

= - l / r  - p 2 / 2 A 2 + 2 A 2 ( r + p / 2 A 2 ) 2 .  (8) 
It is clear that for p < O  this potential possesses two minima, one of infinite depth at 
the origin (arising from the Coulomb term) and  the other near 

r,= -pL/2,i2 ( 9 a )  
of depth 

V l ( r o )  = - p 2 / 2 A 2 .  

However for p 5 0 there is only the minimum at the origin, since 0 s r s CO. 

Notice that the potential function given by equation (8) is similar to the classical 
potential which gives rise to a cusp catastrophe (Thom 1975). In the case of a classical 
particle a catastrophic transition from one potential minimum to another is observed 
when the minimum the particle is in initially is wiped out as a result of the variation 
of a control parameter. In the corresponding quantum mechanical situation no catas- 
trophe would be observed, because the system could never be localised in one of its 
potential minima, unless the two minima were infinitely far apart o r  were separated 
by infinitely high barriers. Catastrophes, reflected as discontinuities in the energy 
spectra, are expected in quantum mechanical systems only when the variation of some 
control parameter either causes a well defined minimum to arise suddenly at an  infinite 
distance away from the position of the original minimum, or causes an  infinite barrier 
between two minima to vanish suddenly. Thus for the potential (8), discontinuities in 
the energy spectrum are likely to arise in the limit p + 0-, only if ro+ CO simultaneously 
(i.e. the second minimum develops suddenly at CO). This is possible only if we consider 
the limit in which both p and A tend to zero such that 

A = a l p / h  (10 )  
where a and  b are arbitrary positive constants which can be chosen appropriately. 
For p < O  equations ( 9 )  can then be written as 

ro' -p(1-2b,/2a2 ( 1 l a )  

V l ( r o )  = -p2"-"/2a2.  ( 1 l b )  
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Thus if we examine the behaviour of the potential around p =0,  it is clear that as p 
changes sign, from positive to negative, we go abruptly from the situation in which 
the potential has a single minimum (at the origin) to one in which the potential has 
two minima (the position of the additional minimum being given by equation ( l l a ) ) .  
The nature of this sudden change in the shape of the potential will be governed by 
our choice of the values of the constants a and  b. Therefore it is of interest to investigate 
the behaviour of the eigenvalue spectrum of the Hamiltonian (7) for different choices 
of these constants. 

2.1. The case b = 1 

In this case equations (1 1) give, for p < 0, 

r,= -1 /2pa2  (12a) 

V,(ro) = - 1 / 2 a 2 + 2 a 2 p  (126) 
where we have included terms to order p in equation (12b). These equations indicate 
that a well of constant depth -1/2a2 and  of infinite width develops at infinity as 
p + 0-. Thus for all energy states which can be supported by this displaced harmonic 
well the preference is to be localised in this well at infinity rather than the much 
narrower Coulomb well at the origin. We therefore expect the energy levels to collapse 
to the bottom of this displaced well (i.e. -1/2a2) as p + 0-. On the other hand, those 
hydrogen atom levels which lie lower than the minimum of this displaced well will 
continue to remain localised in the Coulomb well. In this case, therefore, a can be 
adjusted to make the eigenvalues converge to any desired negative energy. In particular 
the eigenvalue spectrum for a =f, 1, $ and $ have been studied and the behaviour of 
the spectra match our expectations (figure 1). It is seen that if a is chosen such that 
the accumulation point ( -1/2a2) of the energy eigenvalues (as p + 0-) is less than or 
equal to -4, all levels converge to this point ( - l / 2a2  being equal to -2 in figure l ( a )  
and -4 in figure 1 ( b ) ) .  However, if this accumulation point is set such that it is greater 
than the ground-state energy (- f) but less than the first-excited-state energy (-i) of 
the s-wave hydrogen atom, the ground-state energy detaches itself from the accumula- 
tion point and  becomes continuous across p = 0 while the other eigenvalues still 
collapse to the accumulation point (-0.281 25 in figure l ( c )  corresponding to a = $) 
as p+O-. 

In  order to confirm this picture of the behaviour of the energy spectrum we carry 
out a two-level linear variation calculation with the trial wavefunction given by 

+ =  c, e x p ( - r ) + c , e x p [ - u l p ~ ( r + 1 / 2 p ~ ~ ) ~ ]  (13) 
which is a sum of two terms, the first of which is Coulomb-like at the origin while the 
other is harmonic oscillator-like but centred at ro= -1/2pa2. Neglecting terms (for 
a <2 ,  when p < 0 )  which vanish at least as fast as exp[( l -2 /a ) /4a lp l ] ,  the two 
eigenvalues are given by 

E =-$-31p1+6a2p2 ( 1 4 ~ )  
E ’ = - 1 / 2 a 2 S ( a  -2 ) /p1+(13-5a )a4p2 /2 .  (14b) 

We see that as p +O-, E + -f and E’+ -1/2a2. As long as -1/2a2 is less than (for 
a = 0.5 in figure l ( a ) )  or equal to - f  (for a = 1 in figure l (b ) ) ,  E’ provides an  upper 
bound to the ground-state energy whereas E provides an upper bound to the first- 
excited-state energy (MacDonald 1933). On the other hand, when -1/2a2 becomes 
greater than - $  ( a  =$  in figure l ( c ) ) ,  the upper bound on the ground-state energy is 
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Figure 1. The energy spectra of the Hamiltonian H ,  plotted against p for b =  1 and  ( a )  
a =$, ( b )  a = 1, ( c )  a = $  and  ( d )  a = $ .  
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provided by E which still remains at -; as /*. -+ 0 while E’ ,  which now lies higher than 
E, provides an  upper bound on  the first-excited-state energy. This therefore confirms 
the picture of the behaviour of the energy levels at their accumulation point in the 
limit p -+ 0- provided by our numerical calculations. 

In fact, if we choose a value for a larger than 2 (say a = 2 . 5  in figure l ( d ) )  so that 
-1/2a2 is set between the first- and  second-excited-state energies of the s-wave hydrogen 

i I ’/ 

-0.2- 

-0.3 ~ 

- 0 . 4  

I -0.51 
I 1  

P P 

i c )  1 s t  

1 , , , 1 , , 1 Figure 2. The energy spectrum of the Hamiltonian 
-10 -0 8 -0 6 -0 6 -0 2 0 0 2 0 6 0 6 0 8 H, plotted against p for: ( a )  a =0.397 and b =:; 

P ( b )  a = 0.63 and b = f ;  ( c )  A = 0.3. 
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atom, the ground-state and  the first-excited-state levels both detach themselves from 
the point of accumulation and become continuous across p = 0 since neither of these 
levels can now be supported by the well at infinity on account of it not being deep 
enough. The other levels still collapse to the accumulation point. 

Therefore as the value of a is increased and  the accumulation point is raised, one 
by one the energy levels detach themselves and  become continuous across p = 0 with 
the s-wave hydrogen atom levels, until in the limit a +cc the eigenvalue spectrum will 
show no discontinuity at all. 

2.2. The case b > 1 

Examination of equations (1 1) makes it clear that in this case the second minimum at 
infinity is infinitely deep, growing wider and wider as p+O-. Thus all the energy 
levels are expected to fall to --oo in the displaced harmonic well in the limit p + 0- 
independent of the value of a, while still converging to the s-wave hydrogen atom 
levels for p + O+. Figure 2 ( a )  shows this type of discontinuity for a = 0.397 and  b = !. 

2.3. The case b < 1 

We d o  not expect any discontinuity in the eigenvalue spectrum in this case since 
equations (11) indicate that the depth V, ( ro )  of the second minimum tends smoothly 
to zero as p + 0-, irrespective of the behaviour of ro.  The position of this well can 
be made to approach the origin for b <0.5, can be fixed at a distance ro= 1 /2a2  from 
the origin for b = 0.5 or  can be made to go to infinity for 0.5 < b < 1. However, since 
in each case the depth of the well tends to zero in the limit p + 0-, all the eigenstates 
will remain confined in the Coulomb well in this limit and  no discontinuity in the 
energy spectrum is expected for any value of a. We show that this is indeed the case 
for a = 0.63 and  b = in figure 2( b ) .  

2.4. The case A = constant 

Finally we consider the situation in which A is kept at  a fixed non-zero value and only 
p is made to tend to zero. It can be verified from equation (96) that this is another 
case in which the depth of the additional minimum tends to zero in the limit p + 0-. 
We d o  not therefore expect any discontinuity in the eigenvalue spectrum and we see 
that this is indeed the case in figure 2 ( c )  in which p is varied across zero but A is 
fixed at  0.3. Notice that as A is never equal to zero the energy levels do  not now 
coincide with the hydrogen atom levels at  p = 0. 

3. The three-dimensional oscillator 

We now wish to discuss the behaviour of the s-wave energy spectrum of the Hamiltonian 

H 2  = p 2 / 2  + 2pr  + 2h’r’. ( 1 5 )  

This Hamiltonian differs from our previous one in that the Coulomb term is missing. 
The reason for studying this Hamiltonian is to demonstrate explicitly that the discon- 
tinuities in eigenvalue spectra encountered in the previous section did not arise as a 
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result of the presence of the Coulomb term. The potential corresponding to this 
Hamiltonian can be written as 

V,( r ) = 2pr + 2A * r2 ( 1 6 ~ )  

or 

V,( r )  = -p2 /2A2+2A2(  r + p/2A2)’.  ( 1 6 b )  

Clearly, for p 3 0 this potential always has a minimum at the origin (since 0 r < CO) .  

However, for p < 0 the position ro and the depth V2( ro) of its minimum are given by 

0 -  - - p ( 1 - 2 h ) / 2 a 2  ( 1 7 a )  

v 2 0  ( r  ) = + - h )  / 2 a 2  ( 1 7 b )  

A = alp lh  ( 1 7 4  

where we have again taken 

since we wish to consider only the limit in which both p and A vanish simultaneously, 
as this is the situation in which a discontinuity in the energy spectrum is expected. 

All the discussions of the previous section can be carried over except for the fact 
that as the Coulomb term is missing, all the eigenvalues are expected, in the limit 
p + 0+, to tend to zero-the energy levels of a free particle. 

3.1. The case b = 1 

For b = 1 ,  while all of the energy levels are expected to accumulate at zero as p + 0+, 
they should, as p + 0-, collapse to the bottom of the displaced harmonic well of depth 
-1/2a2 which develops at  CO. Here a can be chosen to set the accumulation point of 
the energy eigenvalues to any desired negative energy as p + 0-. In particular, the 
energy spectrum for a = l  is shown in figure 3 ( a ) .  The general behaviour of the 
spectrum in the limit p + 0- is similar to that discussed in the previous section. 

3.2. The case b > 1 

For values of b greater than one, as p goes from positive to negative, a very wide well 
of infinite depth appears suddenly at infinity. Thus, in this case as p + 0- all eigenvalues 
are expected to collapse to -a, The qualitative behaviour of the energy spectrum in 
the region p 3 0 is expected to remain the same as in the case b = 1 above. The 
eigenvalue spectrum for a = 0.397 and b =! displaying these features is shown in figure 
3 ( b ) .  

3.3. The case b < 1 

We d o  not expect any discontinuity in this case because the potential develops a 
minimum smoothly at the origin when p becomes negative. The eigenvalues are thus 
expected to converge to zero in both limits p + 0- and p + O+. This feature of the 
energy spectrum is displayed in figure 3 ( c )  for a = 0.63 and b =$. 
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4. Conclusion and the one-dimensional oscillator 

We can summarise our findings by asserting that two conditions seem to be necessary 
for eigenvalue spectra to display discontinuity; a minimum of the potential should 
develop suddenly at infinity as some coupling constant or  combination of coupling 
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constants crosses a critical value or  a set of such values, and the depth of this minimum 
should be non-zero. 

With the benefit of hindsight we can in conclusion offer a simple example for which 
analytic solutions are known and which displays most of the features we have studied. 
The example is nothing but the displaced harmonic oscillator in one dimension and 
is offered as evidence that our reported discontinuities in eigenvalue spectra are not 
artefacts of the numerical techniques we have used in this study. Consider therefore 
the one-dimensional Hamiltonian 

H ( x )  =p2/2+2px+2A2x2.  ( 1 8 )  

The corresponding potential function can be written as 

V (  x )  = 2 k x  + 2h 2 ~ 2  

= - p 2 / 2 h 2 + 2 ( h ~ + ~ / 2 h ) 2  

which has a minimum at 

xg= -p /2A2  

the depth of the minimum being 
Vo=-p2/2A 2 . 

The eigenvalues of this system can easily be seen to be given by 

These can be made to converge to any value between 0 and -cc in the double limit 
F, A -f 0,  whereas for p and A strictly equal to zero, all the E, are always zero. 

The analytic solutions of the one-dimensional displaced harmonic oscillator there- 
fore display qualitatively the same features as we have established for Hamiltonians 
H I  and H 2 .  This gives us confidence in our numerical results and  shows that the 
discontinuities in eigenvalue spectra we have encountered are generic to the class of 
Hamiltonians we have studied. 
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